8^2n=1/64

Simple and best practice solution for 8^2n=1/64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^2n=1/64 equation:



8^2n=1/64
We move all terms to the left:
8^2n-(1/64)=0
We add all the numbers together, and all the variables
8^2n-(+1/64)=0
We get rid of parentheses
8^2n-1/64=0
We multiply all the terms by the denominator
8^2n*64-1=0
Wy multiply elements
512n^2-1=0
a = 512; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·512·(-1)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*512}=\frac{0-32\sqrt{2}}{1024} =-\frac{32\sqrt{2}}{1024} =-\frac{\sqrt{2}}{32} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*512}=\frac{0+32\sqrt{2}}{1024} =\frac{32\sqrt{2}}{1024} =\frac{\sqrt{2}}{32} $

See similar equations:

| X=-6+-9x | | 14-x-5=-5×+3 | | 3=2a/3+1 | | x(x+1)+(x+1)=36 | | -x+x=-7 | | 2(3x-5)=-3-3(x+4) | | 2-4(2p-1)=3(p-2) | | 8^2n=64^-1 | | 8^2n=64-1 | | 4(2x-3)+5(3x-4)=4 | | 5m-1=16 | | -2(2p-1)=3(p-2) | | 3c=18.6 | | -2x+3x-1x=-20 | | 2-4(2p-1=3(p-2) | | -2x+3x-1x=-29 | | -2x+3x-1x=-19 | | 3a/5+4a/5=-1 | | X2+136x=16 | | 45=5t² | | 5t²=45 | | x2+4x×34=16 | | 4t/2+7=27 | | x^2+4x×34=16 | | 261=87x | | 7x-5=8x-10 | | 2x+27=8x+9 | | X²+3x-88=0 | | x8(x−7)=−16 | | 10x-14=6x+10 | | 4i/5+4=24 | | 4c/9+(c+5)/6=4 |

Equations solver categories